Перевод: с русского на английский

с английского на русский

область чисел

  • 1 область чисел

    1) Engineering: number field
    2) Physics: number domain

    Универсальный русско-английский словарь > область чисел

  • 2 область чисел

    number domain мат.

    Русско-английский научно-технический словарь Масловского > область чисел

  • 3 область чисел

    Русско-английский научный словарь > область чисел

  • 4 область пропорциональности

    Русско-английский большой базовый словарь > область пропорциональности

  • 5 область массовых чисел

    Engineering: mass region

    Универсальный русско-английский словарь > область массовых чисел

  • 6 поле целых чисел

    Русско-английский большой базовый словарь > поле целых чисел

  • 7 родственная область

    Русско-английский большой базовый словарь > родственная область

  • 8 диапазон массовых чисел масс-спектрометра

    1. mass number range

     

    диапазон массовых чисел масс-спектрометра
    диапазон массовых чисел

    Область значений массовых чисел, ограниченная наименьшим и наибольшим значениями массовых чисел однозарядных ионов, которые могут быть зарегистрированы данным масс-спектрометром
    [ ГОСТ 15624-75]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > диапазон массовых чисел масс-спектрометра

  • 9 stability island

    островок устойчивости (область чисел протонов и нейтронов, отвечающая массивным устойчивым атомным ядрам)

    Англо-русский словарь промышленной и научной лексики > stability island

  • 10 поле

    1. field

     

    поле
    область
    сфера (деятельности)

    Поле - это математическая структура, состоящая из конечного или бесконечного набора F и двух бинарных действий, которые называются добавление и мультипликация. Типичные примеры содержат набор вещественных чисел, набор рациональных чисел и набор модуля целых чисел p.
    [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > поле

  • 11 множество

    1. set

     

    множество
    набор
    комплект


    [ http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=4318]

    множество
    Одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое целое». (Так определял множество основатель теории множеств, известный немецкий математик Георг Кантор. Правда, уже в начале XX в. стало ясно, что определение Кантора нельзя считать достаточно строгим, так как оно приводит к различным логическим противоречиям. Широко распространено убеждение, что «М.» — понятие, поясняемое только на примерах. Такая странная для математики ситуация объясняется отчасти тем, что все попытки определить термин «М.» приводят, по существу, к замене его другими, столь же неопределенными понятиями). Примеры множеств: М. действительных чисел, М. лошадей в табуне, М. планов, М. функций, М. переменных задачи. Все М., кроме пустого М., состоят из элементов. Например, каждое действительное число есть один из элементов М. действительных чисел. То, что элемент a принадлежит множеству A, обозначают с помощью специального знака a ?A. Это читается так: «a принадлежит множеству А в качестве элемента». М. можно задать прямым перечислением элементов. Пусть А состоит из элементов a1, a2, a3. Это записывается так: A = {a1, a2, a3}. Если непосредственное перечисление элементов М. невозможно (например, когда М. A состоит из бесконечного числа элементов), его определяют характеристическим высказыванием, т.е. высказыванием, истинным только для элементов данного М. В таком случае употребляется запись типа: A = {x|P(x) = И}, которая читается так: «М. A — есть М., состоящее из элементов x таких, что P(x) — истинно». Множество М всех планов x, удовлетворяющих условию, что они лучше (больше), чем план x0, может быть задано с помощью высказывания: М {x|(x>x0) = И} или сокращенно: M = {x|(x>x0)}. Коротко остановимся на определениях и свойствах действий над множествами. Прежде всего, можно рассмотреть два М. — A и B, обладающих следующим свойством: все элементы М. A принадлежат и М. B. Множество A есть, таким образом, подмножество B. Это обозначается так: A ? B. Предположим теперь, что даны произвольные М. A и B. Тогда из элементов этих М. можно сконструировать несколько других: Во-первых, М. элементов, принадлежащих либо A, либо B; такая операция над М. обозначается через A ? B и называется объединением; ясно, например, что если A? B, то A ? B = B; кроме того, A? B = B? A это свойство называется коммутативностью; (A? B) ? C = A ? (B? C) - это свойство — ассоциативность (возможность произвольного разбиения на группы); Во-вторых, можно рассмотреть также М. элементов, принадлежащих и A, и B одновременно; такая операция называется пересечением и обозначается через ?. Предположим, что A? B, тогда A ? B = A. Для того, чтобы пересечение двух М. имело смысл, даже если у них нет общих элементов, вводится понятие пустого М., т.е. М. без элементов. Его обозначают ?. Легко увидеть, что A ? ? = A; A ? ? = ? ; Так же, как и объединение, операция ? — ассоциативна и коммутативна. Объединение множеств называют иногда их суммой, а пересечение их — произведением. В третьих, можно выделить также подмножество элементов множества A, не принадлежащих B. Это действие называется дополнением B до A или разностью A\B. Так же как и в случае обычной разности, это действие некоммутативно. В евклидовом n-мерном пространстве М., содержащее все свои граничные точки, — замкнутое; М., для которого существует (n-мерный) шар, целиком его содержащий, — ограниченное; ограниченное и замкнутое М. называется компактным; о выпуклом М. см. Выпуклость, вогнутость. В разных контекстах вместо слова множество часто употребляют: область (напр. Область допустимых решений) или пространство (напр. Простртанство производственных возможностей). См. также Венна диаграммы, Декартово произведение множеств, Нечеткое, размытое множество.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > множество

  • 12 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 13 WD

    Англо-русский словарь промышленной и научной лексики > WD

  • 14 world domain

    Англо-русский словарь промышленной и научной лексики > world domain

  • 15 цифровое кодирование

    Русско-английский большой базовый словарь > цифровое кодирование

  • 16 дискретное программирование

    1. discrete programming

     

    дискретное программирование
    Раздел оптимального программирования, изучающий экстремальные задачи, в которых на искомые переменные накладывается условие целочисленности, а область допустимых решений конечна. Таким образом, здесь используется модель общей задачи математического программирования с дополнительным ограничением: x1, x2, …, xn — целочисленны. В экономике огромное количество задач носит дискретный характер. Прежде всего это связано с физической неделимостью многих факторов и объектов расчета: например, нельзя построить 2,3 завода или купить 1,5 автомобиля. Все отраслевые задачи строятся в расчете на определенное количество предприятий или проектных вариантов. В планировании распространены типовые размеры предприятий, типовые мощности агрегатов — все это вносит дискретность в расчеты. Наконец, упомянем плановые показатели: годовые, месячные или суточные периоды — это дискретные, раздельные периоды, у каждого из которых есть свое начало и свой конец. Дискретными являются задача о коммивояжере, задача о назначениях, задачи теории расписаний и другие. Для решения задач Д.п. применяется ряд способов. Самый простой — решение обычной задачи линейного программирования с проверкой полученного результата на целочисленность и округлением его до приближенного целочисленного решения. Скажем, получилось из расчета, что надо построить 2,3 завода, выбираются либо два, либо три (что, разумеется, требует дополнительного анализа), точно так же не 1,5 автомобиля, а два или один. Часто в практических задачах искомые переменные принимают только два значения — единицу и нуль. (Их называют задачами булева линейного программирования.) Это означает, что данный вариант решения принимается или отвергается (строить или не строить шахту, приобретать или не приобретать машину и т.п.). Иногда Д.п. называется целочисленным. Как видно из приведенных примеров, это не лишено основания, хотя некоторые математики считают такой термин неправильным (исходя из того, что, строго говоря, дискретное — это не обязательно целочисленное, например, ряд чисел — 1,1 — 1,2 — 1,3… — дискретный, но не целочисленный). Поэтому правильнее, очевидно, считать целочисленное программирование частным случаем дискретного.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > дискретное программирование

  • 17 оценка бизнеса

    1. business valuation

     

    оценка бизнеса
    (точнее — оценка стоимости бизнеса), не только акт, процесс (см. Оценивание), но и результат определения стоимости фирмы, иного бизнеса – любого характера и размера. Если рассматривать оценку (value) как результат процесса оценивания, она может быть выражена численно как определенная величина, как последовательность чисел или как отношение (напр., не более чем, не менее чем) к предшествующему суждению о стоимости или к некоторому численному значению (напр., залоговая стоимость). Здесь стоимость — несколько расплывчатое и неуловимое понятие, его смысл меняется в зависимости от ситуации. Вот некоторые из распространенных определений[1]: а. Обоснованная ( или справедливая) рыночная стоимость (Fair market value). б. Обоснованная стоимость (в текущих ценах)(Fair value). в. Инвестиционная стоимость (Investment value). г. Действительная стоимость (Intrinsic value). д. Стоимость действующего предприятия (Going concern value) е. Ликвидационная стоимость (Liquidation value). ж. Балансовая стоимость (book value).. Уже этот перечень определений стоимости, применяющихся в разных ситуациях и для разных целей, показывает, сколь сложна задача оценки бизнеса. Между тем она за последние десятилетия развилась в разветвленную область экономической науки, широко использующую количественные, в том числе математические методы. Выработаны многочисленные методики оценки, разного рода коэффициенты и нормативы, накапливаются массивы данных для типизации и сравнения оцениваемых объектов, которыми могут быть как стоимость целых фирм и предприятий, так и стоимость долей собственности, принадлежащих отдельным акционерам и, наконец, стоимость отдельных акций. При всем многообразии методов и подходов к оценке, можно сформулировать принцип, разделяемый, по-видимому, большинством оценщиков: фирма (бизнес) стоит столько, сколько составляет сегодняшняя стоимость будущих выгод, которые этот бизнес принесет своему владельцу или владельцам; при этом каждая выгода дисконтируется к сегодняшней стоимости по дисконтной ставке, отражающей степень риска (уровень неопределенности) того, что эти выгоды не будут реализованы. Проще говоря, нет смысла покупать бизнес, если он не окупится в приемлемый срок. Этот принцип реализуется в конкретных методах оценки: методах капитализации и дисконтирования будущих доходов, оценочных мультипликаторов (иногда их называют стоимостными коэффициентами) и в ряде других. См. также Эффективность инвестиционных проектов). [1] По книге: Дж.Фишман, Ш.Пратт и др.,.«Руководство по оценке стоимости бизнеса». М.Квинто-консалтинг, 2000
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > оценка бизнеса

См. также в других словарях:

  • Область целостности — (или целостное кольцо, или область цельности или просто область)  понятие абстрактной алгебры: ассоциативное коммутативное кольцо без делителя нуля (произведение ненулевых элементов не равно 0). Эквивалентное определение: область… …   Википедия

  • Область цельности — Область целостности (или целостное кольцо, или область цельности или просто область)  понятие абстрактной алгебры: ассоциативное коммутативное кольцо с единицей, в котором 0≠1 и произведение двух ненулевых элементов не равно нулю. Условие 0≠1… …   Википедия

  • Область определения функции — Область определения функции  множество, на котором задаётся функция. Содержание 1 Определение 2 Примеры 2.1 Числовые функции …   Википедия

  • Предметная область —         область объектов, универсум рассуждения, универсум рассмотрения, или просто универсум, класс (множество) объектов, рассматриваемых в пределах данного контекста. Под контекстом здесь может пониматься отдельное рассуждение или выражающая… …   Большая советская энциклопедия

  • Целостности область — Область целостности (или целостное кольцо, или область цельности или просто область)  понятие абстрактной алгебры: ассоциативное коммутативное кольцо с единицей, в котором 0≠1 и произведение двух ненулевых элементов не равно нулю. Условие 0≠1… …   Википедия

  • ПРЕДМЕТНАЯ ОБЛАСТЬ — или область объектов теории, универсум рассуждения множество объектов, рассматриваемых в пределах одного рассуждения или в научной теории, т.е. тех объектов, к которым относятся термины и утверждения теории. П.о. включает в себя прежде всего… …   Философская энциклопедия

  • Непрерывность множества действительных чисел — Непрерывность действительных чисел  свойство системы действительных чисел , которым не обладает множество рациональных чисел . Иногда вместо непрерывности говорят о полноте системы действительных чисел[1]. Существует несколько различных… …   Википедия

  • АДДИТИВНАЯ ТЕОРИЯ ЧИСЕЛ — раздел теории чисел, в к ром изучаются задачи о разложении целых чисел на слагаемые заданного вида, а также алгебраич. и геометрич. аналоги таких задач, относящиеся к полям алгебраич. чисел и к множествам точек решетки. Эти задачи наз.… …   Математическая энциклопедия

  • МЕТРИЧЕСКАЯ ТЕОРИЯ ЧИСЕЛ — раздел теории чисел, в к ром изучаются и метрически (т. е. на основе теории меры )характеризуются множества чисел, обладающих определенными арифметич. свойствами. М. т. ч. тесно связана с теорией вероятностей, что иногда дает возможность… …   Математическая энциклопедия

  • ГЕОМЕТРИЯ ЧИСЕЛ — геометрическая теория чисел, раздел теории чисел, изучающий теоретико числовые проблемы с применением геометрич. методов. Г. ч. в собственном смысле сформировалась с выходом основополагающей монографии Г. Минков ского [1] в 1896. Исходным пунктом …   Математическая энциклопедия

  • БОЛЬШИХ ЧИСЕЛ УСИЛЕННЫЙ ЗАКОН — одна из форм больших чисел закона (вего общем понимании), утверждающая, что при определенных условиях с вероятностью единица происходит неограниченное сближение средних арифметических последовательности случайных величин с нек рыми постоянными… …   Математическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»